skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lu, I‐Chung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Sublimation has been known at least since the middle ages. This process is frequently taught in schools through use of phase diagrams. Astonishingly, such a well-known process appears to still harbor secrets. Under conditions in which compound sublimation occurs, gas-phase ions are frequently detected using mass spectrometry. This was exploited in matrix-assisted ionization in vacuum vMAI) by adding analyte to subliming compounds used as matrices. Good vMAI matrices were those that ionize the added analyte with high sensitivity, but even matrices that fail this test often produce ions of likely matrix impurities suggesting that they may be good matrices for some compound types. We also show that binary matrices may be manipulated to provide desired properties such as fast analyses and improved sensitivity. These results imply that sublimation in some cases is more complicated than just molecules leaving a surface and that understanding the physical force responsible, and how the nonvolatile compound becomes charged, could lead to improved ionization efficiency for mass spectrometry. Here we provide insights into this process and an explanation of why this unexpected phenomenon has not previously been reported. 
    more » « less
  2. null (Ed.)
    This Perspective covers discovery and mechanistic aspects as well as initial applications of novel ioni-zation processes for use in mass spectrometry that guided us in a series of subsequent discoveries, in-strument developments, and commercialization. With all likelihood, vacuum matrix-assisted ionization on an intermediate pressure matrix-assisted laser desorption/ionization source without the use of a laser, high voltages, or any other added energy was the defining turning point from which key developments grew that were at the time unimaginable, and continue to surprise us in its simplistic preeminence, and is therefore a special focus here. We, and others, have demonstrated exceptional analytical utility with-out a complete understanding of the underlying mechanism. Our current research is focused on how best to understand, improve, and use these novel ionization processes through dedicated platform and source developments which convert volatile and nonvolatile compounds from solid or liquid matrices into gas-phase ions for analysis by mass spectrometry using e.g., mass-selected fragmentation and ion mobility spectrometry to provide reproducible, accurate, and sometimes improved mass and drift time resolution. The combination of research and discoveries demonstrated multiple advantages of the new ionization processes and established the basis of the successes that lead to the Biemann Medal and this Perspective. How the new ionization processes relate to traditional ionization is also presented, as well as how these technologies can be utilized in tandem through instrument modification and implementa-tion to increase coverage of complex materials through complementary strengths. 
    more » « less
  3. RationaleThe developments of new ionization technologies based on processes previously unknown to mass spectrometry (MS) have gained significant momentum. Herein we address the importance of understanding these unique ionization processes, demonstrate the new capabilities currently unmet by other methods, and outline their considerable analytical potential. MethodsTheinletandvacuumionization methods of solvent‐assisted ionization (SAI), matrix‐assisted ionization (MAI), and laserspray ionization can be used with commercial and dedicated ion sources producing ions from atmospheric or vacuum conditions for analyses of a variety of materials including drugs, lipids, and proteins introduced from well plates, pipet tips and plate surfaces with and without a laser using solid or solvent matrices. Mass spectrometers from various vendors are employed. ResultsResults are presented highlighting strengths relative to ionization methods of electrospray ionization (ESI) and matrix‐assisted laser desorption/ionization. We demonstrate the utility of multi‐ionization platforms encompassing MAI, SAI, and ESI and enabling detection of what otherwise is missed, especially when directly analyzing mixtures. Unmatched robustness is achieved with dedicated vacuum MAI sources with mechanical introduction of the sample to the sub‐atmospheric pressure (vacuumMAI). Simplicity and use of a wide array of matrices are attained using a conduit (inletionization), preferably heated, with sample introduction from atmospheric pressure. Tissue, whole blood, urine (including mouse, chicken, and human origin), bacteria strains and chemical on‐probe reactions are analyzed directly and, especially in the case ofvacuumionization, without concern of carryover or instrument contamination. ConclusionsExamples are provided highlighting the exceptional analytical capabilities associated with the novel ionization processes in MS that reduce operational complexity while increasing speed and robustness, achieving mass spectra with low background for improved sensitivity, suggesting the potential of this simple ionization technology to drive MS into areas currently underserved, such as clinical and medical applications. 
    more » « less